Finding of the week #263

Input Devices and Immersion

During my ongoing literature review I often discover interesting facts about things I’ve never thought about. Sometimes I can connect these facts with my own observations: The result is mostly a completely new idea why things are as they are. Maybe these ideas are new to you, too. Therefore I’ll share my new science based knowledge with you!

This week: This time, I think about how input devices affect the experienced immersion and presence of simulations and virtual environments in general.

Input devices are critical for the immersive effects of a computer game. Aside from allowing players to efficiently play a game, they can also mimic control devices used in the real world thus achieving a higher degree of realism. For instance, playing a racing simulation using a steering wheel can cause a higher degree of immersion than controlling the virtual racing cars with a keyboard. In addition, using devices that simulate the real world results in a higher naturalness and a higher believability of the simulation.

This requirement is even more important in the case of Immersive Virtual Reality (IVR) that visually excludes a player from the real world and gives the impression of being fully immersed in the virtual environment. IVR often, especially when combined with a simulation of a player’s virtual body, achieves a higher degree of presence than normal desktop simulations. Presence is the feeling of actually being directly inside of the virtual environment and being a part of it. This feeling also depends on the believability of the simulation and the degree to which the control devices feel natural to the users.

So far, I mostly was a bit put off by the current control devices of the HTC Vive or Oculus Rift as they basically are ergonomically formed game-pads. Often, they felt a bit bulky to me and resulted in some minor irritations that reduced a bit the immersive effects of the IVR simulations. Recently, I had the opportunity to try out some new input devices: the Manus VR tracking gloves. These gloves feature orientation sensors and analog sensors measuring the degree to which a user’s fingers are bent. This way, the Manus VR gloves allow for a tracking of the player’s hands and a virtual simulation of them and their current gesture.

As I tried the gloves for the very first time, I was very impressed as it really felt natural to me to interact with the virtual environment. A first test scene allowed me to grab and throw objects, to adjust levers, and to open and close drawers. Finally, I was no longer required to carry around bulky control devices. Instead, I could interact with the virtual environment like I would do in the real world: simply manipulating objects with my hands. To me, this was an unprecedented feeling and great immersive experience.

However, this experience also revealed another important requirement for completely believable input devices: haptic feedback. While it felt very believable to grab an object, it was still a bit irritating to have no object in my hands. I had to perform all of these interactions with the help of visual feedback that indicated when I successfully grabbed an object.

In conclusion, by providing more natural input devices, the immersive effects of virtual environments can greatly be improved. This especially is important when the IVR simulations provide a virtual body that represents the user inside of the virtual environments.